Exploit Development

Stack based Buffer Overflows

OWASF COIMBATORE

To Brag
e Adithyan AK - Head of OWASP Coimbatore

® 6+ Years into infosec

e Expertise in web app security, reverse engineering, exploit dev, malware
analysis

e Author of several exploits & cves

e Speaker at various conferences, workshops (IITM Research Park, Defcon
Trivandrum etc)

e Hall of fame in Microsoft, Apple, Intel, Avira, Oppo, etc

e Passion for making and breaking stuffs

OWASF COIMBATORE

Exploit Development - What & Why

® Must have used dozens of exploits

e Download, Compile, Run ->B0000M!!!

e Whatif it’s a backdoor?

e Buffer Overflow

e Storage space

e Stack based ->local variables & return addresses

e Heap based -> dynamic data

OWASF COITIBATORE

Von Neumann Architecture

OWASF COITIBATORE

Program Execution in CPU

e Program ->Sequence of Instructions || IR -> Holds current Ins || IP -> Holds next instruction

Memory reads
the data from the
Address & sends
back to CPU

First Instruction CPU sends
address is copied addressin IP to
into IP Memory

IP is incremented to
CPU executes

oint next .
instruction in IR : pt tion i CPU co.plesthe
instruction in data into IR

memory

OWASF COITIBATORE

CPU General Purpose Registers

e EAX:accumulator: used for performing calculations, and used to store return values from function
calls. Basic operations such as add, subtract, compare use this general-purpose register

e EBX: base (does not have anything to do with base pointer). It has no general purpose and can be used
to store data.

e ECX:counter: used for iterations. ECX counts downward.

e EDX:data: extension of the EAX register. Allows for more complex calculations (multiply, divide)

e ESP:stack pointer

e EBP:base pointer

e ESI:sourceindex: holds location of input data

e EDI: destination index : points to location of where result of data operation is stored

e EIP:instruction pointer

OWASF COITIBATORE

Anatomy of Program in Memory

connects h/w with s/w Kernel -

0x0000
LIFO structure used to pass
data/arguments to functions, and Stack
is used as space for variables

OXFFFF

dynamic memory allocation Heap
variables, dynamic buffers Data
instructions that the processor executes Text -

OWASF COITIBATORE

Anatomy of the Stack

ESP (Extended Stack Pointer) Top

A
x41 Buffer Space
EBP (Extended Base Pointer) -
Address of EIP (Extended Instruction Pointer) / Return Address

Malicious code

OWASF COITIBATORE

int main(){
char realPassword[20];

char givenPassword[20];

strncpy(realPassword, "ddddddddddddddd", 20);

realPassword givenPassword

gets(givenPassword);
ddddddddddd input

if (0 == strncmp(givenPassword, realPassword, 20)){

printf("SUCCESSI\n");
lelse{

printf("FAILURE'\n");
}
printf("givenPassword: %s\n", givenPassword);
printf("realPassword: %s\n", realPassword);

return 0;

OWASF COITIBATORE

Generic BOF Approach

Locate the
neighbouring
buffer

Malicious
Instruction
executes

Overwrite Buffer
with malicious
instructions

Overwrite the
neighbouring
buffer

Point to the mal.
Buffer

Overwrite the
Return Address

OWASF COITIBATORE

Broad Overview of BOF Exploitation

Target system Local program
running vulnerable Privilege Remote Program
Program escalation
Attain a reverse Rewrite the EIP e e
shell from the with address of buffer with
target system the mal.buffer shellcode

OWASF COITIBATORE

Stack Frame

-~

OWASF COIMBATORE

ESP Local Variables ESP EIP Function
[Buffer] Arguments
NOPS + Shellcode Addr. of
Buffer

Fuzzing

® To identify the buffer length & capacity

e Stream of chars are sent

e Until the program breaks

e A=x41

e B=x42

e Find how many bytes break the buffer

e MSF Pattern create and offset

e Generate random string

e locate the position of the string reflected in EIP

e Overwrite EIP

OWASF COITIBATORE

Finding the Badchars

® unwanted characters that can break the shell codes.

e no universal set of bad characters
e different set of bad characters for every program
o 00 for NULL
o OAforLine Feed \n
e Send the full list of the characters from 0x00 to OxFF
e Check using debugger if input breaks
e |Ifso, find the character that breaks it
e Remove the character from the list

e Ifinput no longer breaks, use the rest of the characters to generate shellcode

OWASF COITIBATORE

Mona - by Corelan

4 Immunity Debugger - minishare.exe - [Log data]
File View Debuq Pluqin< Imleb Optlons Window Help Jobs

—/;9> . "J "' ”1 em ¢t th c P krbr ZAT S ?7 SILICA Developer Wanted

bﬂddress - ~

BBADFBED
BBADFBED
BEADFBED
BBADFBBD
BEADFBED0
BEADFBED0
BBADFBE0
QBQDFBBD
Modu

ws
BBRDF@BD [+] FA ing output file 'find.tut’
(Re ting logfile find.tx
BBQDFBBD [riting results to find.tx
BBADFAED0 mber of pointers of type
BBADFBED t
7E429353 5 i {PAG KEC _READ} CUS : ! ; : : True, 0S: Tr 5.1, g (Cz\WINDOU
7E4456F7 s C E. AD) : f r el
7E4S5AF7
7E45B318
7E47BCAF
7E47BCEF
7E47BCCE
7E48227C
7E4838EC C
7E48321C iiprint
7E4338408 H iiprint
7E48494B b 3 i iiprint
7E484A13 3 G
7E434CES
7E484CCH
7E484CC4
TE484F27
7E485608
7E4856DC 2
7E4856EQ B : "\xf
BBADFAAD ... Ple wait while I F
OBADFBBD [+] Done. Only the first 26 4= '; >. For more po ers, open +Lnd i s
BBRDFBED
BBADFBED0

[+] This mona.py action took

Imona find -s "{xffixe4" -m user32.dll

§Running

OWASF COITIBATORE

Generate Shellcode & PWN

OWASF COITIBATORE

Contact

adithyan-ak . adithyan_ak
f akinfosec 1|'1 akinfosec

OWASF COIMBATORE

