Exploit Development

Stack based Buffer Overflows
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To Brag
e Adithyan AK - Head of OWASP Coimbatore

® 6+ Years into infosec

e Expertise in web app security, reverse engineering, exploit dev, malware
analysis

e Author of several exploits & cves

e Speaker at various conferences, workshops (IITM Research Park, Defcon
Trivandrum etc)

e Hall of fame in Microsoft, Apple, Intel, Avira, Oppo, etc

e Passion for making and breaking stuffs
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Exploit Development - What & Why

® Must have used dozens of exploits

e Download, Compile, Run ->B0000M!!!

e Whatif it’s a backdoor?

e Buffer Overflow

e Storage space

e Stack based ->local variables & return addresses

e Heap based -> dynamic data
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Von Neumann Architecture
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Program Execution in CPU

e Program ->Sequence of Instructions || IR -> Holds current Ins || IP -> Holds next instruction

Memory reads
the data from the
Address & sends
back to CPU

First Instruction CPU sends
address is copied addressin IP to
into IP Memory

IP is incremented to
CPU executes

oint next .
instruction in IR : pt tion i CPU co.plesthe
instruction in data into IR

memory
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CPU General Purpose Registers

e EAX:accumulator: used for performing calculations, and used to store return values from function
calls. Basic operations such as add, subtract, compare use this general-purpose register

e EBX: base (does not have anything to do with base pointer). It has no general purpose and can be used
to store data.

e ECX:counter: used for iterations. ECX counts downward.

e EDX:data: extension of the EAX register. Allows for more complex calculations (multiply, divide)

e ESP:stack pointer

e EBP:base pointer

e ESI:sourceindex: holds location of input data

e EDI: destination index : points to location of where result of data operation is stored

e EIP:instruction pointer
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Anatomy of Program in Memory

connects h/w with s/w Kernel -

0x0000
LIFO structure used to pass
data/arguments to functions, and Stack
is used as space for variables

OXFFFF

dynamic memory allocation Heap
variables, dynamic buffers Data
instructions that the processor executes Text -
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Anatomy of the Stack

ESP (Extended Stack Pointer)  Top

A
x41 Buffer Space
EBP (Extended Base Pointer) -
Address of EIP (Extended Instruction Pointer) / Return Address

Malicious code
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int main(){
char realPassword[20];

char givenPassword[20];

strncpy(realPassword, "ddddddddddddddd", 20);

realPassword givenPassword

gets(givenPassword);
ddddddddddd input

if (0 == strncmp(givenPassword, realPassword, 20)){

printf("SUCCESSI\n");
lelse{

printf("FAILURE'\n");
}
printf("givenPassword: %s\n", givenPassword);
printf("realPassword: %s\n", realPassword);

return 0;
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Generic BOF Approach

Locate the
neighbouring
buffer

Malicious
Instruction
executes

Overwrite Buffer
with malicious
instructions

Overwrite the
neighbouring
buffer

Point to the mal.
Buffer

Overwrite the
Return Address
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Broad Overview of BOF Exploitation

Target system Local program
running vulnerable Privilege Remote Program
Program escalation
Attain a reverse Rewrite the EIP e e
shell from the with address of buffer with
target system the mal.buffer shellcode
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Stack Frame

-~
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ESP Local Variables ESP EIP Function
[ Buffer ] Arguments
NOPS + Shellcode Addr. of
Buffer




Fuzzing

® To identify the buffer length & capacity

e Stream of chars are sent

e Until the program breaks

e A=x41

e B=x42

e Find how many bytes break the buffer

e MSF Pattern create and offset

e Generate random string

e locate the position of the string reflected in EIP

e Overwrite EIP
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Finding the Badchars

® unwanted characters that can break the shell codes.

e no universal set of bad characters
e different set of bad characters for every program
o 00 for NULL
o OAforLine Feed \n
e Send the full list of the characters from 0x00 to OxFF
e Check using debugger if input breaks
e |Ifso, find the character that breaks it
e Remove the character from the list

e Ifinput no longer breaks, use the rest of the characters to generate shellcode

OWASF COITIBATORE



Mona - by Corelan

4 Immunity Debugger - minishare.exe - [Log data]
File View Debuq Pluqin< Imleb Optlons Window Help Jobs

—/;9> . "J "' ”1 em ¢t th c P krbr ZAT S ?7 SILICA Developer Wanted

bﬂddress - ~

BBADFBED
BBADFBED
BEADFBED
BBADFBBD
BEADFBED0
BEADFBED0
BBADFBE0
QBQDFBBD
Modu

ws
BBRDF@BD [+] FA ing output file 'find.tut’
(Re ting logfile find.tx
BBQDFBBD [ riting results to find.tx
BBADFAED0 mber of pointers of type
BBADFBED t
7E429353 5 i {PAG KEC _READ} CUS : ! ; : : True, 0S: Tr 5.1, g (Cz\WINDOU
7E4456F7 s C E. AD) : f r el
7E4S5AF7
7E45B318
7E47BCAF
7E47BCEF
7E47BCCE
7E48227C
7E4838EC C
7E48321C iiprint
7E4338408 H iiprint
7E48494B b 3 i iiprint
7E484A13 3 G
7E434CES
7E484CCH
7E484CC4
TE484F27
7E485608
7E4856DC 2
7E4856EQ B : "\xf
BBADFAAD ... Ple wait while I F
OBADFBBD [+] Done. Only the first 26 4= '; >. For more po ers, open +Lnd i s
BBRDFBED
BBADFBED0

[+] This mona.py action took

Imona find -s "{xffixe4" -m user32.dll

§Running
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Generate Shellcode & PWN
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Contact

adithyan-ak . adithyan_ak
f akinfosec 1|'1 akinfosec
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