
Exploit Development
Stack based Buffer Overflows

To Brag
● Adithyan AK - Head of OWASP Coimbatore

● 6+ Years into infosec

● Expertise in web app security, reverse engineering, exploit dev, malware

analysis

● Author of several exploits & cves

● Speaker at various conferences, workshops (IITM Research Park, Defcon

Trivandrum etc)

● Hall of fame in Microsoft, Apple, Intel, Avira, Oppo, etc

● Passion for making and breaking stuffs

Exploit Development - What & Why

● Must have used dozens of exploits

● Download, Compile, Run -> B0000M!!!

● What if it’s a backdoor?

● Buffer Overflow

● Storage space

● Stack based -> local variables & return addresses

● Heap based -> dynamic data

Memory

Data Instructions

Von Neumann Architecture

Program Execution in CPU
● Program -> Sequence of Instructions || IR -> Holds current Ins || IP -> Holds next instruction

Memory reads
the data from the
Address & sends

back to CPU

CPU copies the
data into IR

CPU executes
instruction in IR

First Instruction
address is copied

into IP

CPU sends
address in IP to

Memory

IP is incremented to
point next

instruction in
memory

CPU General Purpose Registers
● EAX : accumulator : used for performing calculations, and used to store return values from function

calls. Basic operations such as add, subtract, compare use this general-purpose register

● EBX : base (does not have anything to do with base pointer). It has no general purpose and can be used

to store data.

● ECX : counter : used for iterations. ECX counts downward.

● EDX : data : extension of the EAX register. Allows for more complex calculations (multiply, divide)

● ESP : stack pointer

● EBP : base pointer

● ESI : source index : holds location of input data

● EDI : destination index : points to location of where result of data operation is stored

● EIP : instruction pointer

Anatomy of Program in Memory

Kernel

Stack

Heap

Data

Text

 Top

 Baseinstructions that the processor executes

variables, dynamic buffers

0x0000

0xFFFF

dynamic memory allocation

LIFO structure used to pass
data/arguments to functions, and
is used as space for variables

connects h/w with s/w

Anatomy of the Stack

ESP (Extended Stack Pointer)

Buffer Space

EBP (Extended Base Pointer)

EIP (Extended Instruction Pointer) / Return Address

 Top

 Base

A
x41

Address of
Malicious code

int main(){

char realPassword[20];

char givenPassword[20];

strncpy(realPassword, "ddddddddddddddd", 20);

gets(givenPassword);

if (0 == strncmp(givenPassword, realPassword, 20)){

printf("SUCCESS!\n");

}else{

printf("FAILURE!\n");

}

printf("givenPassword: %s\n", givenPassword);

printf("realPassword: %s\n", realPassword);

return 0;

}

realPassword givenPassword

ddddddddddd input

Overwrite Buffer
with malicious

instructions

Overwrite the
Return Address

Point to the mal.
Buffer

Locate the
neighbouring

buffer

Overwrite the
neighbouring

buffer

Malicious
Instruction

executes

Generic BOF Approach

Remote Program

Overflow the
buffer with
shellcode

Rewrite the EIP
with address of
the mal.buffer

Target system
running vulnerable

Program

Local program
Privilege

escalation

Attain a reverse
shell from the
target system

Broad Overview of BOF Exploitation

000
000
000

Local Variables
[Buffer]

ESP EIP Function
ArgumentsESP

NOPS + Shellcode Addr. of
Buffer

Stack Frame

Fuzzing

● To identify the buffer length & capacity

● Stream of chars are sent

● Until the program breaks

● A = x41

● B = x42

● Find how many bytes break the buffer

● MSF Pattern create and offset

● Generate random string

● locate the position of the string reflected in EIP

● Overwrite EIP

Finding the Badchars

● unwanted characters that can break the shell codes.

● no universal set of bad characters

● different set of bad characters for every program

○ 00 for NULL

○ 0A for Line Feed \n

● Send the full list of the characters from 0x00 to 0xFF

● Check using debugger if input breaks

● If so, find the character that breaks it

● Remove the character from the list

● If input no longer breaks, use the rest of the characters to generate shellcode

Mona - by Corelan

Generate Shellcode & PWN

Contact

adithyan-ak

akinfosec

adithyan_ak

akinfosec

